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Supplementary Methods 

Detailed description of the algorithm 

STED and synthetic images were analyzed by means of PSF decomposition via Bayesian 

analysis. The algorithm flow diagram is shown in Fig. 1c of the main text. The algorithm 

relies on the detection of fluorescence features and their subsequent reconstruction as a 

sum of PSFs whose width and intensity distribution are estimated by analyzing images of 

sparse markers (Supplementary Fig. S1). To ensure that the membrane environment 

does not alter the intensity distribution of the markers, we compared the distribution 

obtained from markers immobilized on a glass coverslip with that obtained by imaging 

the labeled mutated DC-SIGN receptor (ΔRep), mostly organized as monomers on CHO 

cell membranes1.  The similarity between the two distributions validates our calibration 

for marker intensity (Supplementary Fig. S1c). 

 

A schematic view of the working algorithm is presented in Supplementary Fig. S2. 

The algorithm is applied on the raw images without filtering or preprocessing. The first 

step consists in the SEARCH routine used to determine the image area having the highest 



probability of containing features that can be associated to marker fluorescence emission 

(upper row on Supplementary Fig. S2). The routine calculates the likelihood that the pixel 

intensity values Ii,j in a square box of size bw have a Gaussian (noise-like) distribution 

with background offset m and variance s2: 
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where the hat symbols indicate maximum likelihood estimators (MLEs). MLEs are 

obtained by partial derivation of the likelihood function, giving: 
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The calculation is performed over the whole image by sliding the box pixel by pixel. A box 

size of length bw = 4×FWHM+1 was found to correctly estimate the presence of emitters 

and limit false positive identifications. Boxes partly lying outside the image area are 

excluded. In order to minimize computational time, the calculation of Lnoise and MLEs is 

performed via Fourier transform. In this way, we obtain a likelihood map of the image 

(Supplementary Fig. S2). The pixel position showing the maximum negative likelihood -

Lnoise (corresponding to the maximum probability of having features that do not 

correspond to noise) is singled out and the box centered at this pixel position is passed to 

the next algorithm step, consisting in the box-BIC evaluation (Supplementary Fig. S2, 

middle row). In this step, the intensity map of the box region is attempted to be 

reconstructed as the sum of n PSFs. Each PSF corresponds to a two-dimensional Gaussian 

function: 
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where x0 and y0 are the peak location coordinates, I0 is the peak intensity and σ is the 

radius at which the PSF decays at ~60% of its maximum. For a given image, σ is kept 

fixed at the value 
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,        (eqn. S5) 

where the FWHM is independently measured from images of sparse markers adsorbed on 

a coverslip and sets the resolution of the STED image (Supplementary Fig. S1a-b). The 

peak coordinates and intensity are used as free parameters and the fitting is performed 

via minimization of the Bayesian Information Criterion: 
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In the last equation, the first product in the logarithm represents the likelihood of the 

model in reconstructing the image and is given by:  
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with M and S2 being the local estimation for noise background offset and variance. 

The second term in the logarithm describes the likelihood for the PSF peak intensities to 

belong to the marker intensity distribution: 

! 

Lint = gI (Ik ),         (eqn. S8) 

where gI is the probability distribution of marker peak intensities experimentally 

determined from the image of sparse antibodies (Supplementary Fig. S1a). To allow 



calculation of gI for every value of Ik, the peak intensities histogram obtained from 

isolated markers was interpolated by means of a Gaussian kernels density distribution 

(Supplementary Fig. S1c).  

The third term in Eqn. S6 introduces a penalty for the addition of further PSFs, thus 

preventing overestimation of the particle number. The number of PSFs used to model the 

intensity distribution within the box is sequentially increased and the corresponding BIC 

calculated until a stable global minimum is obtained, with 

! 

nmax = arg
n
{min(BIC)}+ 2. 

The PSFs corresponding to the BIC minimum are considered as those providing the most 

faithful reconstruction of the intensity map of the box and are stored for the subsequent 

analysis. Although during the fitting routine the PSFs are allowed to have center positions 

lying even outside the box, only the coordinates of the PSFs located at a distance from 

the box edges larger than bw/6 are passed to the next algorithm block, the REC/SUB 

routine. If no PSFs are found within this area, the value of Lnoise of the box center pixel is 

set to 0 to prevent the algorithm to return to evaluate the same area. 

In the REC/SUB routine, the PSFs found by box-BIC are subtracted from the original 

image (SUB) and in parallel added to a null matrix to obtain the partial reconstructed 

image (REC, Supplementary Fig. S2, lower row). Then, the SUB image becomes the new 

entry of the algorithm in the next iteration as schematically indicated by the red dashed 

arrows in Supplementary Fig. S2. At each iteration, newly found PSFs are progressively 

added to the REC image and subtracted from the SUB one. After every REC/SUB 

evaluation, the global likelihood of the subtracted image intensity is evaluated and the 

algorithm is stopped when further subtractions of PSFs does not cause an increase in the 

likelihood value. Although this choice allows fast calculation, it tends to slightly 

overestimate the number of emitters and to produce a higher false positive recognition 

rate. Therefore, the routine is finally refined by the application of cumulative BIC analysis 

on the entire reconstructed image. In this finishing step, all the individual localizations 



previously retrieved are sorted in descending order of their individual likelihood. The BIC 

is then cumulatively calculated over the whole image. The localizations producing a 

decrease of the overall BIC up to a global minimum are retained, whereas those 

producing a BIC increase are excluded (Supplementary Fig. S2, most right-side upper 

panel). 

In order to perform the BIC calculation in eqns. S6 and S7, the algorithm requires the 

estimation of mean and variance of the underlying noise, M and S2. Although these 

parameters can be evaluated from image areas free of fluorescent markers, in our 

analysis we opted for an automatic evaluation, based on the application of the described 

method without taking into account intensity constraints on the PSF. Such a choice allows 

to build up a background noise map, taking into account local changes in background 

noise due to cell autofluorescence. 

The algorithm was written in Matlab (The MathWorks, Inc.) and all the analysis were 

performed on a single core i7 processor (3.40 GHz) computer. 

Quantification of receptors spatial organization 

Receptor spatial organization was quantified by calculating the nnd2 and the pair-

correlation function3,4, from the localization coordinates obtained via application of the 

algorithm to the STED images and taking into account the related localization accuracy.  

Calculation of the nnd was performed by generating a distance matrix ri,j from the 

localization coordinate list (xi,yi), with elements given by
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The minimum of each column for i<j represents the distance between the j-th localization 

and its closest neighbor i* and was used to build the nnd. The distribution was calculated 

by taking into account that, due to the finite localization accuracy, the distance between 

localized receptors has an error Δri,j given by 
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accuracy of the i-th localization, thus providing 
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N represents the number of localizations. 

The nnds obtained for the investigated receptors were compared with simulations of 

randomly distributed particles (uniform spatial distribution) at the same surface density.  

The accuracy at which each localization is determined depends on several factors, such as 

PSF width, number of photons, pixel size and background level5 as well as the local 

density of emitters in the neighboring region and their distances6. In order to take into 

account the variation in molecular density present in our experiments, we estimated the 

localization accuracies Δri as 3 times the Cramer-Rao lower bound for an isolated 

Gaussian having same PSF width, number of photons, pixel size and background level5. 

The average values 

! 

"ri  obtained for our experiments are higher than the maximum 

values obtained from simulations (Figure 3 of the main text), thus our choice represents 

a conservative estimate of the localization accuracy. For the simulations, we assumed a 

constant localization accuracy of 25 nm, corresponding to the average localization 

accuracy obtained for our experiments. Enhanced proximity probability was calculated as 

the integral of the difference of the experimental and simulated nnds between r=0 and 

the first cross point between the two distributions.  

The pair-correlation function g(r) was calculated similarly as previously detailed3,4 on 

reconstructed images obtained by convoluting the particle localizations with 2-d Gaussian 

functions having width equal to the localization accuracies Δri. Each curve represents the 

average of at least 30 pair correlations obtained over 4×4 µm2 regions of interest 

extracted from at least 3 cells per condition.    

Fitting of the g(r) curves was performed according to: 
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where the first term accounts for the average particle localization accuracy 

! 

"ri  and with 

ρ indicating the molecular density. The second term represents the convolution of the 

receptor correlation with a Gaussian function having width equal to the average 

localization accuracy. The data obtained for the FR-GPI and the FRTM-Ez-AFBD receptor 

were fitted by means of an exponential function 
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correlation radius. For the FRTM-Ez-AFBD* case, the correlation function also included a 

cosine term, 
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cluster separation. The fitting was performed on the parameters A, ξ and r0, whereas 

! 

"ri  and ρ were fixed at the values determined by the PSF decomposition (

! 

"ri = 22, 18 

and 27 nm and ρ = 43, 18 and 11 µm-2 for FR-GPI, FRTM-Ez-AFBD and FRTM-Ez-AFBD*, 

respectively). The cluster radius rclust was calculated as the value at which grec decays at 

1/e. From these quantities, the average number of particle per cluster Nclust was 

calculated as described in Sengupta et al4. The errors on the fitting parameters were 

calculated as the 95.4% confidence interval7. Errors on the derived quantities were 

obtained through statistical error propagation. All the analyses were performed using 

custom routines written in Matlab (The MathWorks, Inc.).  

 

Comparison with Compressed Sensing method 

In order to compare the performance of our method to other algorithms, we have 

analyzed a set of our simulated data with the previous reported Compressed Sensing 

method for STORM8 using the Matlab code provided by its authors. We used a patch size 

of 7x7 pixels, ε=1.5 and a 12x12 subdivision (corresponding to 2.1 nm per pixels). In 

order to allow comparison with our method, compressed sensing results were converted 

into lists of molecular positions8. 

Supplementary Figure 3 compares the rate of molecule identification (recall fraction, 

Rf) of the two methods as a function of the molecular density for several STED 



parameters. The larger use of prior knowledge (probability distribution of marker 

intensity and instrumental PSF) in our Bayesian method provides superior performance in 

the investigated range of parameters. 

The difference in instrumental settings (pixel size, detectors, fluorophores) between 

STORM and STED imaging prevent a direct comparison of our results with those 

previously published8. 
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SUPPLEMENTARY FIGURES 

 

Figure 1. PSF and intensity distribution of single fluorescent markers. (a) STED image of 

single fluorescent markers adsorbed on a glass coverslip. Normalized line profiles of 

fluorescent markers show the PSF shape and width. (b) Distribution of the FWHM of 

several fluorescent markers allow determination the instrumental resolution of the STED 

microscope, providing 93±15 nm (s.d.). Red line represents the Gaussian fit of the 

distribution. (c) Distribution of peak intensity of single fluorescent markers immobilized 

on a glass coverslip (bars) and for labeled DC-SIGN receptor mutants (ΔRep)1 on CHO 

cell membranes (dotted line). The continuous distribution (red line) was estimated by a 

Gaussian kernel function. 
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Figure 3. Comparison of algorithm performance with the compressed sensing method of 
Zhu et al8. The recall fraction Rf as a function of molecular density for simulated images 
with FWHM=90 nm at varying imaging parameters. For the compress sensing analysis we 
used a patch size of 7x7 pixels, ε=1.5 and a 12x12 subdivision (corresponding to 2.1 nm 
per pixels). In order to allow comparison with our method, compressed sensing results 
were converted into lists of molecular positions8.  

 


